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We address the generic problem of extracting the scaling exponents of a stationary, self-affine process
realized by a time series of finite length, where information about the process is not known a priori. Estimating
the scaling exponents relies upon estimating the moments, or more typically structure functions, of the prob-
ability density of the differenced time series. If the probability density is heavy tailed, outliers strongly
influence the scaling behavior of the moments. From an operational point of view, we wish to recover the
scaling exponents of the underlying process by excluding a minimal population of these outliers. We test these
ideas on a synthetically generated symmetric �-stable Lévy process and show that the Lévy exponent is
recovered in up to the 6th order moment after only �0.1–0.5 % of the data are excluded. The scaling
properties of the excluded outliers can then be tested to provide additional information about the system.
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I. INTRODUCTION

There is increasing observational evidence that natural
systems often show scaling in a statistical sense, coincident
with non-Gaussian “heavy tailed” statistics. Complex sys-
tems approaches aim to understand these phenomena as uni-
versal, with a key quantitative prediction of theory being
scaling exponents. Importantly, the identification of universal
scaling functions implies the ability to describe many differ-
ent length and time scales as well as apparently disjoint
physical phenomena with the same macroscopic scaling be-
havior �1–3�.

One of the outstanding challenges in complex system sci-
ence is then to find robust methods that �i� establish whether
there is scaling and �ii� accurately determine the scaling ex-
ponents for statistical measures of series of data that are of
large, but finite length. We seek to determine the scaling
properties of probability distributions that are heavy-tailed.
The scaling exponents can be determined through the scaling
behavior of the moments, usually characterized by comput-
ing structure functions. Where the probability density is
heavy tailed the moments and structure functions can depend
strongly on extremal values, or outliers. Once we insist that
the data series is represented by a finite number of measure-
ments, the values at which these outliers occur will always
vary between one realization and the next. From an opera-
tional point of view, that is, when the underlying behavior is
not known a priori, these outliers can potentially distort the
scaling properties of the data and the values of scaling expo-
nents extracted via the structure functions. In this paper we
propose a generic method for excluding these outliers in a
manner which does not distort the underlying scaling prop-
erties of the data. These outliers also contain information and
we explore a method for extracting this. We will test these
ideas on numerically generated Lévy processes.

There has been considerable interest in fractional kinetics
as providing stochastic models for the data of candidate com-
plex systems �4,5�. Lévy processes and their associated scal-

ing exponents have been identified for example in biological
systems �flight time intervals in the foraging of albatrosses
�6��, financial markets �price changes in the S&P 500 index
�7��, and physical systems �velocity differences in turbulence
�9� and atom trapping times in laser cooling �8��. A robust
method for determining the Lévy exponent from finite-sized
data sets, where the statistics are not known a priori is thus
important in its own right. The method that we propose here
is however quite generic, with application to a wide class of
systems that show scaling; for example, those that can be
modeled by stochastic differential equations with scaling
�10–12�. In this wider context Lévy processes, which have
nonconvergent higher order moments, provide a particularly
stringent test of our ideas.

Statistical self-similarity. One can characterize fluctua-
tions in a time series x�t� on a given time scale � in terms of
a differenced variable y�t ,��,

y�t,�� = x�t + �� − x�t� , �1�

for time t and interval �, where the time series and/or sto-
chastic process x�t� represents a particular realization or set
of observations of the system from which the y’s are gener-
ated. We consider the case where the y�t ,�� satisfy the fol-
lowing scaling relation:

y�b��=
d

f�b�y��� , �2�

where b is some scale dilation factor; =
d

indicates an equality
in the statistical and/or distribution sense; f is some scaling
function �to be determined�; and we have dropped the time
argument in the increments y by assuming statistical station-
arity. Both b and f�b� are positive. The property in Eq. �2� is
a generalized form of self-affinity, and in this sense x�t� is a
self-affine field. Self-affinity is a particular case of statistical
self-similarity, i.e., stochastic processes that exhibit the ab-
sence of characteristic scales �3,12,13�. We can write the
scaling transformations �2� as*Electronic address: k.kiyani@warwick.ac.uk
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�� = b�, y� = f�b�y , �3�

where the primed variables represent scaled quantities. Con-
servation of probability under change of variables implies
that the probability density function �PDF� of y, P�y ,�� is
related to the PDF of y�, P�y� ,��� by

P�y,�� = P��y�,����dy�

dy
� , �4�

thus giving from Eq. �3�

P�y,�� = f�b�P��y�,��� = f�b�P�„f�b�y,b�… . �5�

The result �5� expresses the fact that the stochastic process
x�t� is statistically self-similar, i.e., that a given process on
scale �� �and thus y�� maps onto another process based on a
different scale � �and y� by the scaling transformation in Eq.
�3�; and that the PDFs of both these processes are related by
Eq. �5�.

We can go further and reduce the expression �5� to a
function of one variable. Since the dilation factor b is arbi-
trary we choose b=�−1, which gives the important result

P�y,�� = f��−1�P�„f��−1�y,1… = f��−1�Ps„f��−1�y… , �6�

and shows that any PDF P of increments y characterized by
a time increment � may be collapsed onto a single unique
PDF Ps of rescaled increments f��−1�y and time increment
�=1, by the above scaling transformation. Identification of
this unique scaling function and the ensuing collapse is a
clearer method of discriminating between different �univer-
sality� scaling classes than simply identifying the scaling ex-
ponents by themselves �1�.

In this paper we will consider the scaling as defined by
the structure functions. The generalized structure functions
of order p are simply defined as

Sp��; ± � � = ��y�p	 = 

−�

�

�y�pP�y,��dy . �7�

The analysis which follows is also valid for the moments;
however, structure functions are typically calculated for data.
This avoids the result that odd order moments of symmetric
PDFs are zero so that as a consequence, in a physical system,
they would be dominated by experimental error. Using the
transformation �6�, the scaling of the structure functions is

Sp��; ± � � = 

−�

�

�y�pP�y,��dy

= 

−�

�

�y�pf��−1�Ps�f��−1�y�dy

=
y�=yf��−1�

„f��−1�…−p

−�

�

�y��pPs�y��dy�

= „f��−1�…−pSs
p�1; ± � � . �8�

This formalism encompasses a general class of self-affine
systems in the sense that it is not restricted to the well-
studied case of monoexponent scaling.

The above result �8� holds provided that the PDF P is
defined for all y. However, for finite data sets this is not the
case. In this situation we have the integral �7� defined for the
interval �y− ,y+� where the y± are defined in some sense by
the largest events measured in the data set. The values of y±
will depend on the time scale � and the sample size N �which
will be held constant�. Thus the structure functions for the
finite data set are

Sp
„�;y±���… = 


y−���

y+���

�y�pP�y,��dy . �9�

Manipulating this in a similar way to Eq. �8� results in the
following scaling relation:

Sp
„�;y±���… = „f��−1�…−pSs

p
„1;y±���f��−1�… . �10�

If we assume that the largest events y± scale with � in the
same way as the increments y in Eq. �3� �see Eq. �25� later�,
then Eq. �10� becomes

Sp
„�;y±���… = „f��−1�…−pSs

p
„1;ys±�1�… . �11�

We will consider the case of self-affine scaling where the
scaling function f takes the form of a monoscaling power
law f�b�=bH=�−H, where H is known as the Hurst exponent.
Equation �6� then becomes

P�y,�� = �−HPs��−Hy� , �12�

and Eq. �8� becomes

Sp��; ± � � = ���p�Ss
p�1; ± � � , �13�

where ��p�=Hp for this self-affine case. A log-log plot of Sp

vs � for various orders p reveals scaling if present, and the
slope of such a plot determines the exponents ��p� �2,14�.
One then verifies that ��p�=Hp by plotting ��p� as a function
of p.

The aim of this paper is to obtain a good estimate of
the scaling properties of Eq. �7�, the structure functions at
N→�, via Eq. �11� for N large but finite; where N represents
the length of the time series being considered. However, we
can anticipate that simply setting the limits y± of the integral
�9� to the largest values found in a given realization of the
data, will give a scaling behavior of Eq. �11� which can differ
substantially from that of Eq. �13�. This problem arises since
the y values of the extremal points fluctuate between one
realization and the next, and these fluctuations are more sig-
nificant in heavy tailed distributions. This in turn will
strongly modify the integral. We will therefore explore the
possibility of choosing a range for the integral �9� based on
the scaling property of the data itself, by systematically ex-
cluding the most extreme outlying points. This has the added
advantage of not requiring a priori information about the
system.

We stress that as our aim is to extract scaling exponents,
we do not attempt to estimate the value of the moments or
structure functions. Thus we will not compute an estimate of
the integral �7� per se, rather we will examine methods for
quantifying its dependence on the dilation factor b �or
equivalently ��. Hence, our method can be applied to Lévy
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processes—where the moments are not defined, but where
the PDF has scaling.

The paper is organized as follows. We first introduce the
Lévy process that we will use to obtain Eq. �9� and briefly
survey results pertaining to its asymptotic behavior. We then
discuss the effects of finite-sized data sets and demonstrate
the effect of removing outliers on the scaling behavior of the
Lévy process. We then explore the behavior of these outliers.

II. LÉVY PROCESSES AND FINITE-SIZE EFFECTS

A. �-stable processes

Many stochastic processes exhibit self-affine scaling and
are characterized by “broad tails” described by power laws in
their PDFs. Some possible mechanisms by which these
power laws occur are discussed in �2�. This general class of
stochastic processes can be described in the context of so-
called �-stable Lévy processes �4,15,16�. We will restrict our
attention to symmetric �-stable processes. The PDFs L�

� of
the increments y of these processes are defined through the
Fourier transform of their characteristic function

L�
��y,�� =

1

2�



−�

�

dkeikye−���k��, �14�

where ��0 and ��0 are the characteristic scales of the
process and describe the width of the distribution; and �
� �0,2� parameterizes the stability of the distribution; � can
be heuristically seen as an indication of the variability of the
increments of such processes �also known as Lévy flights�. In
this paper we will take �=1 and will consequently reduce the
notation L�

� to L�. The form and convention of the param-
eters in Eq. �14� are similar to that presented in �17�; for a
more rigorous discussion of the mathematical properties of
such processes readers are referred to �15,16�.

From Eq. �14� it follows that the scaling properties of L�

are

L��y,�� = �−1/�L���−1/�y,1� = �−1/�Ls,���−1/�y� , �15�

from which the Hurst exponent of symmetric �-stable pro-
cesses is H=1/�, by comparison with Eq. �12�. Figure 1�a�
shows the L��y ,�� for �=1.4 and a range of �
=20 ,21 , . . . ,210; the scaling collapse �15� has been applied to
these in Fig. 1�b�.

We now focus on the asymptotic behavior of such distri-
butions. By expanding the complex exponential in Eq. �14�
and integrating one can show that in the large y limit we
obtain the asymptotic behavior

lim
y→�

L��y,�� �
�	�1 + ��sin���/2�

��y�1+� = D�

�

�y�1+� , �16�

for y��1/� �17,24�. It immediately follows that these power-
law tails ensure that for the pth moment to exist, p−�
0.
Hence the process has no variance defined for 0
�
2, and
in the cases where 0
��1 the process will also have no
mean defined, i.e., both these quantities and the other higher-
order moments are infinite.

A generalized version of the central limit theorem �CLT�
�2� ensures that the sum of all independent and identically

distributed �IID� random variables with no finite variance
that have distributions with power-law tails that go asymp-
totically as y−1−� ��� �0,2�
, will converge to a Lévy distri-
bution of the same index �. In practice, however, we will
always obtain a finite mean and variance from a finite-length
time series.

B. Finite-size effects and outliers

We will now consider in detail the procedure for extract-
ing the scaling exponents, ��p�, from the structure functions
in Eq. �13�. This centers on first computing Sp�� ;y±� and the
gradients ��p� of log-log plots of Sp�� ;y±� vs �. If the process
is self-affine ���p�=Hp� we should obtain a straight line on a
plot of ��p� vs p from which we can measure the gradient
and obtain the Hurst exponent, H. Note that the ��p� for
several p are needed to determine H uniquely �12�.

However, finite sample sizes result in pseudomultiaffine
behavior. As we will show, the primary reason for this
anomalous behavior is due to the large scatter in the outlying
events of the tails of the distribution. In the case of Lévy-like

FIG. 1. �Color online� Plots showing probability density func-
tions of the Lévy distribution for index �=1.4 �N=106� at different
values of differenced interval � �a� before and �b� after the scaling
collapse described by Eq. �15�.
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processes this scaling bias shows up as a saturation or roll
over on the ��p� plots at p��. This can be seen in Fig. 2
which illustrates both the methodology of extracting scaling
exponents from structure function plots, and this finite
sample size saturation effect in a Lévy process of index �
=1.4. This saturation effect is well known and an explanation
for it can be found in the work by Schmitt et al. �5� and
Chechkin and Gonchar �18�. We will now establish the scal-
ing properties of these extremal events. We need to empha-
size, however, that in contrast to �5,18� we will propose a
method for estimating the integral in Eq. �7� such that the
scaling in Eq. �13� is recovered for all p.

We consider the situation where we have many realiza-
tions, that is many data series of size N obtained from the
same process. Each of these realizations will have extremal
points y* of their respective PDF. We know the properties of
ȳ*, the ensemble average of the y* over the realizations, since
it will fall on the Lévy asymptotic distribution �16�. We will
use a simple example of extreme value theory, EVT �see �2��,
to obtain an estimate of the largest event in a sample of N

IID measurements of a random variable y�R+. An approxi-
mation to the probability to see an event that occurs only
once can be made by realizing that an event with probability
P occurs typically NP times. Therefore, the rarest event in a
sample of N measurements, which occurs typically only
once, can be seen to be described by NP�y� ȳ*�=1, where
P�y� ȳ*� is the probability of observing an event greater
than or equal to ȳ*; thus

P�y � ȳ*� =
1

N
. �17�

We can generalize this to the mth largest event:

P�y � ȳm
* � =

m

N
. �18�

For the case of the Lévy-like process, within the limits of the
integral in P�y� ȳm

* � the main contribution is from the tail
and thus we can use Eq. �16� and estimate P�y� ȳm

* � to be

P�y � ȳm
* � = 


ȳm
*

�

L��y,��dy � D��

ȳm

*

� dy

�y�1+� . �19�

Evaluating the integral and equating with Eq. �18� gives the
following result for the scaling behavior of the mth largest
event:

ȳm
* = �D�N�

m�
�1/�

. �20�

A more detailed account would be to attempt to specify
approximately the full PDF of the mth largest event among N
IID measurements. Following Sornette �2� the cumulative
distribution function �CDF� 
�y
 ȳm

* � of the maximum
value is


�y 
 ȳm
* � = 


−�

ȳm
*

pN�y�dy � e−�N/m�P�y�ȳm
* �, �21�

where pN�y� is the PDF of the maximum value among N
observations, and is obtained by differentiating Eq. �21� to
obtain

d
�y 
 ȳm
* �

dym
* = pN�ȳm

* � =
N

m
L��ȳm

* ,��e−�N/m�P�y�ȳm
* �. �22�

By substituting Eq. �19� in Eq. �21�, we obtain an estimate of
the mth largest value, ȳm,


* , that will not be exceeded with
probability 
. By setting the left-hand side �LHS� of Eq.
�21� to some probability 0


1, we obtain

ȳm,

* = � D�N�

m� ln�1/
��
1/�

. �23�

If one was to set 
=1/2 the value of ym
* would correspond to

the median value of the mth largest event. To obtain the
modal value of ȳm

* , we optimize for the maximum by differ-
entiating Eq. �22� and setting it to zero. This gives us the
following solution for the modal value of ȳm

* :

ȳm,mode
* = � D�N�

m�1 + ���
1/�

. �24�

FIG. 2. �Color online� Plots of �a� generalized structure func-
tions Sp vs � for moments of order p=1–6, and �b� the scaling
exponents ��p� vs p �solid black line�. These quantities are shown
for a Lévy process of index �=1.4 and with N=106 data points. The
dashed line indicates the expected scaling ��p�= p /� for p
�; the
dotted-dashed line indicates the scaling exponent observed for p
�� in a finite-sized sample. The vertical arrow at p�� separates
these two regions of scaling.
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By comparing these expressions one can see that although
the approximation of ȳm

* becomes more refined, the scaling
with � is still that of Eq. �20�. Thus we will proceed using the
simplest expression �20�. In addition, we will be working
with a varying fraction m /N rather than varying m or N
separately. Importantly, since we are concerned primarily
with the scaling with respect to �, we will write ȳm

* more
informatively as ȳm

* ��� and thus adding to our scaling rela-
tions

ȳm
* ��� = �1/�ȳm

* �1� , �25�

as expected from Eq. �2� �26�. We emphasize that this is the
scaling of ȳm

* ; the average over the mth largest events of a
large number of realizations �time series�. In practice we will
have a single realization and thus one value of ym

* which will
fluctuate about this ensemble averaged ȳm

* . The behavior �25�
refers to the property that any point in the curve P�y ,��
scales as Eqs. �6� and �3�.

III. STRUCTURE FUNCTIONS

A. Effects of finite sample size

We can now investigate the scaling behavior of the struc-
ture functions of a Lévy-like process, but now with a finite
sample size. Following the procedure in Eq. �11� we can
discuss the structure functions in the average sense, that is
averaged over many realizations of our N sample finite-
length time series:

S̄p
„�; ȳ1,±

* ���… = 

−ȳ1,−

* ���

ȳ1,+
* ���

�y�pL��y,��dy

= 

−ȳ1,−

* ���

ȳ1,+
* ���

�y�p�−1/�Ls,���−1/�y�dy , �26�

where we have set m=1 in ȳm
* to emphasize that this is the

structure function for the raw data with the largest events
obviously bounding the data; the subscripts + and − indicate
the largest positive and negative events. The substitution y�
=�−1/�y gives

S̄p
„�; ȳ1,±

* ���… = �p/�

−ȳ1,−

* ����−1/�

ȳ1,+
* ����−1/�

�y��pLs,��y��dy�

= �p/��

0

ȳ1,+
* ����−1/�

y�pLs,��y��dy�

+ 

0

ȳ1,−
* ����−1/�

y�pLs,��y��dy�� . �27�

To approximate the integrals in Eq. �27� we assume that
values of the largest events are deep in the tail region of the
distribution so that we may use the asymptotic form �16�.
This gives

S̄p
„�; ȳ1,±

* ���… = �
D�

p − �
�ȳ1,+

*�p−����� + ȳ1,−
*�p−������ ∀ p � � ,

�28�

where the condition p�� is necessary as all structure func-
tions of order p
� of a Lévy distribution exist �i.e., are
finite� and this approximation would result in an infrared
divergence in Eq. �27�, which is clearly incompatible. For the
ensemble average Eqs. �19�, �20�, and �25� hold; thus we can
simply substitute Eq. �25� into Eq. �28� to obtain

S̄p
„�; ȳ1,±

* ���… = �p/� D�

p − �
�ȳ1,+

*�p−���1� + ȳ1,−
*�p−���1�� . �29�

In practice the value of ym
* will vary for each realization of

P�y ,�� about the average ȳm
* which obeys Eq. �25�. For a

given functional form of P�y ,�� the ym
* will have some prob-

ability density pN�ym
* � with a statistical spread about the av-

erage ȳm
* . An approximation to this can be made by substi-

tuting the asymptotic tail form of Eq. �16� into Eq. �22� to
obtain

pN�ym
* � =

�

ym
*1+� exp�−

�

�ym
*�� , �30�

where � is given by

� =
ND��

m
. �31�

Equation �30� is of the form of a stretched exponential. As
with any power-law tailed PDF it has infinite variance for
0
�
2. In the context of EVT, Eq. �30� is not surprising as
it is simply an extreme value distribution of type II, i.e., the
PDF from a Fréchet distribution. The extreme value distribu-
tions can be seen as the large event statistics equivalent to
stable distributions �i.e., Gaussian and Lévy�. The interested
reader is referred to �19,20� for a further discussion of EVT
and extreme value distributions.

A plot of the PDF �30� is given in Fig. 3 for various
values of � and for �=1.5. From Fig. 3 we see that as the
value of � increases, the PDF of ym

* broadens. Importantly,

FIG. 3. �Color online� Plot showing the PDF, in Eq. �30�, of the
mth largest value of a sample size N of a set of measurements taken
from a Lévy-like process; the Lévy index �=1.5.
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the PDF of ym
* �30� has an infinite variance and thus has more

frequently occurring extreme values of ym
* away from ȳm

* .
Thus from Fig. 3 and Eq. �31� we see that the scatter in the
ym

* about the average ȳm
* increases with N and decreases with

m /N.

B. Conditioning—overview

We now present a method to “condition” data so that the
scaling behavior �13� emerges from the structure functions
obtained for a finite data series. From an operational point of
view, that is, when attempting to determine an �unknown�
exponent from a finite length time series, our aim is to re-
cover Eq. �13� for as many orders p as feasible. This method
involves excluding a fraction m /N of the largest events from
the data set such that our postexclusion tails are now suffi-
ciently resolved and populated. Although there is some lit-
erature on the removal of extreme outliers in data, the first
time it was clearly done in the scaling context was by Katul
et al. �21� followed later by Veltri et al. �22,23�. They calcu-
lated structure functions via the use of a Haar wavelet trans-
form and conditioned their data by separating the wavelet
coefficients into two classes: the majority of coefficients
which characterize the “quietly turbulent flow”; and the co-
efficients which characterize the rare intermittent events cor-
responding to coherent structures. The partition between
these two classes was a wavelet coefficient based upon a
multiple F of the square root of the second moment of the
coefficients. The easiest way to view this is by looking at the
more recent works of Hnat et al. �11,12� �and Refs. therein�
who employed an equivalent technique but did not use wave-
let transforms to calculate the structure functions. Along with
their solar wind turbulence data, the latter authors also stud-
ied some toy cases of fractional Brownian motion and a
Lévy process of �=1.8. This conditioning can be succinctly
written as the approximation

Sp��; ± � � = 

−�

�

�y�pP�y,��dy

→ SC��; ± A�

= 

−A

A

�y�pP�y,��dy , �32�

where A=Q����, ���� is the standard deviation, and Q is
some constant. This corresponds to clipping the wings of the
distribution to exclude the very large unresolved events. All
of the above studies �12,21,22� showed that removing a rela-
tively few percentage of points is sufficient to regain the
scaling. However, the disadvantage of these schemes is that
the measure used to exclude the extreme events is the stan-
dard deviation, �, of the raw data which must be calculated
a priori and we have already seen in the above analysis that
p�� �and thus �� is poorly represented in the unconditioned
data. A better estimate is to condition the data based on the
actual extreme events, i.e., by excluding a certain negligible
fraction of the data outliers.

A brief mention should be made of the work by Jespersen
et al. �24�. They studied the behavior of Lévy flights in ex-
ternal force fields and used a form of conditioning for ob-

taining a good statistical ensemble in the power-law tail
range of a Lévy process. Their conditioning, however, as-
sumes a priori knowledge of the distribution and its scaling
behavior, and is thus not congruent to the applications to
which this paper aims; this being single finite size natural
time series.

To summarize, our procedure will be to
�1� Choose limits of the integral in Eq. �32� such that the

scaling �13� is recovered—using a method that does not re-
quire a priori knowledge of the PDF P�y ,�� to specify those
limits.

�2� This procedure will exclude the most outlying points
��1% �.

�3� These outliers contain some physics of the system.
They may or may not share the scaling �12� with the core of
the PDF P�y ,��, instead showing finite-size scaling �expo-
nential rolloff� or other dynamics. Therefore we will also test
the outliers for the property �25�.

C. Conditioning—Lévy process

We now test these ideas with a numerically generated
Lévy process. The increments y of the Lévy process of index
� were generated by using the following algorithm �25�:

y =
sin��r�

�cos r�1/�� cos��1 − ��r�
v

��1−��/�

, �33�

where r� �−� /2 ,� /2� is a uniformly distributed random
variable and v is an exponentially distributed random vari-
able with unit mean. Expression �33� corresponds to the
Lévy distribution �14� with �=1 and �=1. We generate a
sample of size N and then construct a time series by use of a
cumulative sum. This time series was then differenced at
various � as in Eq. �1� using an overlapping window; appro-
priate here since the data increments are uncorrelated. Struc-
ture functions of the increments, Sp(� ;y±

*���), are then calcu-
lated at different orders p and at different values of �. These
are then plotted on a Sp vs � plot and a linear regression is
performed to obtain the gradients ��p� for each moment or-
der p. The plots of these ��p� vs p are shown in Fig. 4 for the
two cases �=1.0 and �=1.8. The error bars in Fig. 4 were
obtained from the difference between the linear regression of
the structure functions for all values of � concerned, and the
linear regression with the last two � values not included.

In Fig. 4 we see that if no outliers are removed from the
integral for Sp, the resulting values of ��p� for p�� saturate
to unity. Removing a small fraction ��0.001% � of the out-
liers results in a drastic change in the ��p�, again emphasiz-
ing the strong effect these points have in the integral for Sp.
The ��p� converge to the values predicted by Eq. �29� quite
rapidly with m /N. The rate of convergence is illustrated in
Fig. 5 for the two cases shown in Fig. 4. Convergence is
achieved at m /N=0.001 for �=1.8 and m /N=0.005 for �
=1.0; which correspond to the largest event being y*�18
and y*�130, respectively. These values lie in the region
given by Eq. �16�, as the asymptotic tail region of the PDF is
valid for y��1/�=1 here.

It is also instructive to investigate the effects of variations
in sample size N on the rates of convergence. Figure 6 illus-
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trates these effects in the form of ��p� vs p plots for sizes
N=105 and N=5�106 for a Lévy process of index �=1.0.
Recall that decreasing the sample size would result in further
undersampling and thus poor statistics in the tails of the PDF.
This can be clearly seen in Fig. 6�a� where we see a slow
convergence to the line ��p�= p /� which is achieved after
�4% of the data is excluded. The converse of this is shown
in Fig. 6�b� where increasing the sample size by a factor of
20 results in a very rapid convergence to scaling which is
reached after only �0.5% of the data is excluded.

Lastly we consider the behavior of the outliers that are
removed by this procedure. As we successively remove more
outliers �increasing m�, the behavior of ym

* will more closely
correspond to that of ȳm

* . This is shown in Fig. 7 where we
plot ym

* ��� for increasing m /N. The anticipated scaling �25�
appears at a value of m /N corresponding to a few percent. A
more established method for determining the scaling of out-
liers is a rank order �or Zipf� plot �see Sornette �2��; this is
shown in Fig. 8 where we plot ym

* �m /N� for successively
large values of �. The scaling with m /N is again as expected
from Eqs. �20�–�24�, and the rank order plots also highlight
scatter of individual realizations of ym

* from the ensemble
average. In Fig. 8 this becomes apparent at higher values of

�. As we increase � we require a higher fraction of points to
be excluded before we regain the expected scaling with m /N.
This breakdown of the scaling at higher values of � follows
from Eqs. �30� and �31�. We can see that � increases with �
and so the distribution becomes more broad. Consequently
this will require a higher fraction m /N of points to be ex-
cluded so that we may regain the scaling behavior �20�. At
the largest �, Figs. 7 and 8 show a saturation indicative of the
difference ym

* being dominated by a single extremal value x
of the original time series in Eq. �1�. These plots are also a
useful indicator of how feasible, for a dataset of size N, it
would be to distinguish a departure from Lévy scaling in the
tails.

IV. SUMMARY AND CONCLUSIONS

In this paper we have presented a technique for “condi-
tioning” data to deal with anomalous scaling properties that
arise due to finite-size effects. We have demonstrated our
ideas on a numerically generated symmetric �-stable Lévy
process. We are concerned with the situation of observations
of natural systems, or of experiments, where the underlying
PDF is not known a priori and where one inevitably has a
finite length series of data. Hence we have proposed a tech-
nique that does not require a priori knowledge of the under-

FIG. 4. �Color online� Plots showing the exponents ��p� against
moment order p of the generalized structure functions for various
values of the percentage of large events excluded for �a� �=1.0 and
�b� �=1.8. The arrows indicate the percentage beyond which con-
vergence to the expected behavior ��p�= p /� is established. Both
plots are for a sample size of N=106.

FIG. 5. �Color online� Plots showing the rapid convergence of
the Lévy parameter �; and the exponents of the 2nd and 3rd mo-
ments ��2� and ��3�. The plots in �a� are for �=1.0 and in �b� for
�=1.8—both have N=106. ��2� and ��3� are the best fit gradients of
the Sp vs � plots, and � is obtained from the inverse of the gradient
of the ��p� vs p plot shown in Fig. 4.
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lying process and that has consistency checks.
We have shown that “conditioning” the data by progres-

sively excluding the outliers, or extremal points, when com-
puting the scaling exponents from the structure functions,
recovers the underlying scaling of a self-affine process up to
large order. For large datasets of a Lévy process this corre-
sponds to removing 0.1–1% of the data. The conditioned

structure functions then provide a straightforward method for
determining the self-affine scaling exponent, in this case the
Lévy index �, directly from the slope of a plot of the expo-
nents versus moment order.

This method offers two consistency checks. The first of
these is that for a self-affine process, as we progressively
remove more outliers we expect that the exponents obtained
from the structure functions should converge on values
which then do not vary. Practically speaking, one would plot
the exponents as a function of the location of the last outlier
excluded and expect a plateau that extended deep into the tail
of the PDF. A second check is obtained by examining the
scaling properties of these discarded outliers.

Importantly, the above analysis assumes that we have
some relatively good statistics—in practice the high variabil-
ity of the Lévy process due to the fat tails will always result
in some lone extreme points with a finite probability of oc-
currence, resulting in anomalous scaling exponents. This im-
plies that we always need some way of cleaning or condi-
tioning the data to recover the scaling behavior. These lone
points can have a drastic effect since in a Lévy-like process
the largest value of a set of increments of a time series can be
of the order of the total sum �2,8�. Coupled with this we have
that the tails of a distribution are described by the higher
order moments �structure functions here�. If the statistics of
the tail are not well resolved then these moments will also
give anomalous values of ��p�.

Although we have chosen to study the simple case of
monofractal scaling, the methods described in this paper hold
for a general self-affine system where the scaling is de-
scribed by a function f�b� �see Eq. �5��. The extension of the
work presented in this paper to more general self-affine scal-
ings, e.g., bifractal scalings; and, in principle, multiaffine
time series will be the subject of further work.
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FIG. 6. �Color online� ��p� vs p plots for �=1.0; �a� N=105 and
�b� N=5�106. The arrows indicate the percentage beyond which
convergence to the expected behavior ��p�= p /� is established.

FIG. 7. �Color online� Log-log plot illustrating the scaling of the
mth largest event ym

* with � as m is increased; �=1.8, N=106. For
comparison with previous figures we indicate the percent of points
that would be excluded for the particular m.

FIG. 8. �Color online� Log-log plot illustrating the scaling of the
largest event ym

* with m /N for various values of �; �=1.8, N=106.
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